Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/src/libraries/fps/tests/QuickCheckUtils.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


{-# OPTIONS_GHC -fglasgow-exts #-}
--
-- Uses multi-param type classes
--
module QuickCheckUtils where

import Test.QuickCheck.Batch
import Test.QuickCheck
import Text.Show.Functions

import Control.Monad        ( liftM2 )
import Data.Char
import Data.List
import Data.Word
import Data.Int
import System.Random
import System.IO

import Data.ByteString.Fusion
import qualified Data.ByteString      as P
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Base as L (LazyByteString(..))

import qualified Data.ByteString.Char8      as PC
import qualified Data.ByteString.Lazy.Char8 as LC

-- Enable this to get verbose test output. Including the actual tests.
debug = False

mytest :: Testable a => a -> Int -> IO ()
mytest a n = mycheck defaultConfig
    { configMaxTest=n
    , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a

mycheck :: Testable a => Config -> a -> IO ()
mycheck config a =
  do rnd <- newStdGen
     mytests config (evaluate a) rnd 0 0 []

mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO ()
mytests config gen rnd0 ntest nfail stamps
  | ntest == configMaxTest config = do done "OK," ntest stamps
  | nfail == configMaxFail config = do done "Arguments exhausted after" ntest stamps
  | otherwise               =
      do putStr (configEvery config ntest (arguments result)) >> hFlush stdout
         case ok result of
           Nothing    ->
             mytests config gen rnd1 ntest (nfail+1) stamps
           Just True  ->
             mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
           Just False ->
             putStr ( "Falsifiable after "
                   ++ show ntest
                   ++ " tests:\n"
                   ++ unlines (arguments result)
                    ) >> hFlush stdout
     where
      result      = generate (configSize config ntest) rnd2 gen
      (rnd1,rnd2) = split rnd0

done :: String -> Int -> [[String]] -> IO ()
done mesg ntest stamps =
  do putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
 where
  table = display
        . map entry
        . reverse
        . sort
        . map pairLength
        . group
        . sort
        . filter (not . null)
        $ stamps

  display []  = ".\n"
  display [x] = " (" ++ x ++ ").\n"
  display xs  = ".\n" ++ unlines (map (++ ".") xs)

  pairLength xss@(xs:_) = (length xss, xs)
  entry (n, xs)         = percentage n ntest
                       ++ " "
                       ++ concat (intersperse ", " xs)

  percentage n m        = show ((100 * n) `div` m) ++ "%"

------------------------------------------------------------------------

instance Arbitrary Char where
    arbitrary     = choose ('\0','\255')
    coarbitrary c = variant (ord c `rem` 4)

instance (Arbitrary a, Arbitrary b) => Arbitrary (PairS a b) where
  arbitrary             = liftM2 (:*:) arbitrary arbitrary
  coarbitrary (a :*: b) = coarbitrary a . coarbitrary b

instance Arbitrary Word8 where
    arbitrary = choose (97, 105)
    coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 4))

instance Arbitrary Int64 where
  arbitrary     = sized $ \n -> choose (-fromIntegral n,fromIntegral n)
  coarbitrary n = variant (fromIntegral (if n >= 0 then 2*n else 2*(-n) + 1))

instance Arbitrary a => Arbitrary (Maybe a) where
  arbitrary           = do a <- arbitrary ; elements [Nothing, Just a]
  coarbitrary Nothing = variant 0
  coarbitrary _       = variant 1 -- ok?

instance Arbitrary a => Arbitrary (MaybeS a) where
  arbitrary            = do a <- arbitrary ; elements [NothingS, JustS a]
  coarbitrary NothingS = variant 0
  coarbitrary _        = variant 1 -- ok?

{-
instance Arbitrary Char where
  arbitrary = choose ('\0', '\255') -- since we have to test words, unlines too
  coarbitrary c = variant (ord c `rem` 16)

instance Arbitrary Word8 where
  arbitrary = choose (minBound, maxBound)
  coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 16))
-}

instance Random Word8 where
  randomR = integralRandomR
  random = randomR (minBound,maxBound)

instance Random Int64 where
  randomR = integralRandomR
  random  = randomR (minBound,maxBound)

integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g)
integralRandomR  (a,b) g = case randomR (fromIntegral a :: Integer,
                                         fromIntegral b :: Integer) g of
                            (x,g) -> (fromIntegral x, g)

instance Arbitrary L.ByteString where
    arbitrary     = arbitrary >>= return . L.LPS . filter (not. P.null) -- maintain the invariant.
    coarbitrary s = coarbitrary (L.unpack s)

instance Arbitrary P.ByteString where
  arbitrary = P.pack `fmap` arbitrary
  coarbitrary s = coarbitrary (P.unpack s)

instance Functor ((->) r) where
    fmap = (.)

instance Monad ((->) r) where
    return = const
    f >>= k = \ r -> k (f r) r

instance Functor ((,) a) where
    fmap f (x,y) = (x, f y)

------------------------------------------------------------------------
--
-- We're doing two forms of testing here. Firstly, model based testing.
-- For our Lazy and strict bytestring types, we have model types:
--
--  i.e.    Lazy    ==   Byte
--              \\      //
--                 List 
--
-- That is, the Lazy type can be modeled by functions in both the Byte
-- and List type. For each of the 3 models, we have a set of tests that
-- check those types match.
--
-- The Model class connects a type and its model type, via a conversion
-- function. 
--
--
class Model a b where
  model :: a -> b  -- get the abstract vale from a concrete value

--
-- Connecting our Lazy and Strict types to their models. We also check
-- the data invariant on Lazy types.
--
-- These instances represent the arrows in the above diagram
--
instance Model B P      where model = abstr . checkInvariant
instance Model P [W]    where model = P.unpack
instance Model P [Char] where model = PC.unpack
instance Model B [W]    where model = L.unpack  . checkInvariant
instance Model B [Char] where model = LC.unpack . checkInvariant

-- Types are trivially modeled by themselves
instance Model Bool  Bool         where model = id
instance Model Int   Int          where model = id
instance Model Int64 Int64        where model = id
instance Model Int64 Int          where model = fromIntegral
instance Model Word8 Word8        where model = id
instance Model Ordering Ordering  where model = id

-- More structured types are modeled recursively, using the NatTrans class from Gofer.
class (Functor f, Functor g) => NatTrans f g where
    eta :: f a -> g a

-- The transformation of the same type is identity
instance NatTrans [] []             where eta = id
instance NatTrans Maybe Maybe       where eta = id
instance NatTrans ((->) X) ((->) X) where eta = id
instance NatTrans ((->) W) ((->) W) where eta = id

-- We have a transformation of pairs, if the pairs are in Model
instance Model f g => NatTrans ((,) f) ((,) g) where eta (f,a) = (model f, a)

-- And finally, we can take any (m a) to (n b), if we can Model m n, and a b
instance (NatTrans m n, Model a b) => Model (m a) (n b) where model x = fmap model (eta x)

------------------------------------------------------------------------

-- In a form more useful for QC testing (and it's lazy)
checkInvariant :: L.ByteString -> L.ByteString
checkInvariant (L.LPS lps) = L.LPS (check lps)
  where check []     = []
        check (x:xs) | P.null x  = error ("invariant violation: " ++ show lps)
                     | otherwise = x : check xs

abstr :: L.ByteString -> P.ByteString
abstr (L.LPS []) = P.empty
abstr (L.LPS xs) = P.concat xs

-- Some short hand.
type X = Int
type W = Word8
type P = P.ByteString
type B = L.ByteString

------------------------------------------------------------------------
--
-- These comparison functions handle wrapping and equality.
--
-- A single class for these would be nice, but note that they differe in
-- the number of arguments, and those argument types, so we'd need HList
-- tricks. See here: http://okmij.org/ftp/Haskell/vararg-fn.lhs
--

eq1 f g = \a         ->
    model (f a)         == g (model a)
eq2 f g = \a b       ->
    model (f a b)       == g (model a) (model b)
eq3 f g = \a b c     ->
    model (f a b c)     == g (model a) (model b) (model c)
eq4 f g = \a b c d   ->
    model (f a b c d)   == g (model a) (model b) (model c) (model d)
eq5 f g = \a b c d e ->
    model (f a b c d e) == g (model a) (model b) (model c) (model d) (model e)

--
-- And for functions that take non-null input
--
eqnotnull1 f g = \x     -> (not (isNull x)) ==> eq1 f g x
eqnotnull2 f g = \x y   -> (not (isNull y)) ==> eq2 f g x y
eqnotnull3 f g = \x y z -> (not (isNull z)) ==> eq3 f g x y z

class    IsNull t            where isNull :: t -> Bool
instance IsNull L.ByteString where isNull = L.null
instance IsNull P.ByteString where isNull = P.null

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.