Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/tests/nofib/real/compress/compress.stdin

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


{-
 - BinConv.hs
 -
 - Paul Sanders, SRD. 1992
 -
 - This module contains routines for converting numbers to and from a
 - number of binary digits. 
 -
 -}

module BinConv (codes_to_ascii, ascii_to_codes, dec_to_binx) where

zeroes = '0' : zeroes

-- dec_to_binx converts a decimal to a fixed number of binary digits
-- dec_to_binx #binary-digits decimal-number = binary-string

dec_to_binx :: Int -> Int -> String
dec_to_binx x y
     = take (x - length bin_string) zeroes ++ bin_string
       where
       bin_string = dec_to_bin y

dec_to_bin = reverse . dec_to_bin'

dec_to_bin' 0 = []
dec_to_bin' x
      = (if (x `rem` 2) == 1 
         then '1' 
         else '0') : dec_to_bin' (x `div` 2)

codes_to_ascii :: [Int] -> [Int]
codes_to_ascii [] = []
codes_to_ascii (x:y:ns)
	= x_div : ((x_rem * 16) + y_div) : y_rem : codes_to_ascii ns
          where
          (x_div, x_rem) = divRem x 16
          (y_div, y_rem) = divRem y 256
codes_to_ascii [n]
	= [x_div , x_rem]
          where
          (x_div, x_rem) = divRem n 16

ascii_to_codes [] = []
ascii_to_codes (x:y:z:ns)
	= (x * 16) + y_div : (y_rem * 256) + z : ascii_to_codes ns
	  where
	  (y_div, y_rem) = divRem y 16
ascii_to_codes [x,y]
	= [(x * 16) + y_rem]
	  where
	  (y_div, y_rem) = divRem y 16

divRem x y = (x `div` y, x `rem` y) -- missing from PreludeCore ?
module Main (main) where

main = putStr (show (result 1000))

result 0 = []
result n = codes_to_ascii (3077, 1192) ++ result (n-1)

codes_to_ascii (x,y)
	= x_div : ((x_rem * 16) + y_div) : [y_rem]
          where
          (x_div, x_rem) = divRem x 16
          (y_div, y_rem) = divRem y 256

divRem x y = (x `div` y, x `rem` y) -- missing from PreludeCore ?
{-
 - Decode.hs
 -
 - Module containing the code to decode LZW encodings
 -
 - Paul Sanders, Applications Research Division, BTL 1992
 -
 - DEC_VERSION 1 uses a list with keys in ascending order as a table, ie.
 - entry n is given by table!!n.
 -
 - DEC_VERSION 2 uses a list with keys in descending order as a table, ie.
 - entry n is given by table!!(#table-n). We don't need to calculate the
 - length of the table however as this is given by the value of the next
 - code to be added.
 -
 - DEC_VERSION 3 uses a balanced binary tree to store the keys. We can do
 - this cheaply by putting the key in the correct place straight away and
 - therefore not doing any rebalancing.
 -}

module Decode (decode)
where

import Prelude hiding( lookup )		-- lookup defined locally
import Defaults
import BinConv

data Optional a = NONE | SOME a deriving (Eq, Show{-was:Text-})

{- We ideally want to store the table as an array but these are inefficient
 - so we use a list instead. We don't use the tree used by encode since we
 - can make use of the fact that all our keys (the codes) come in order and
 - will be placed at the end of the table, at position 'code'.
 -
 - An entry of (SOME n, 'c') indicates that this code has prefix code n
 - and final character c.
 -}


{- Kick off the decoding giving the real function the first code value and
 - the initial table.
 -}

decode :: [Int] -> String
decode []
      = []
decode cs
      = decode' cs first_code init_table

{- decode` decodes the first character which is special since no new code
 - gets added for it. It is also special in so far as we know that the
 - code is a singleton character and thus has prefix NONE. The '@' is a
 - dummy character and can be anything.
 -}

decode' [] _ _ = []
decode' (c:cs) n t
      = ch : do_decode cs n c ch t
        where
        (NONE, ch) = lookup c t

{- do_decode decodes all the codes bar the first. 
 -
 - If the code is in the table (ie the code is less than the next code to be 
 - added) then we output the string for that code (using unfold if a prefix 
 - type) and add a new code to the table with the final character output as 
 - the extension and the previous code as prefix.
 -
 - If the code is not one we know about then we give it to decode_special for
 - special treatment
 -}

do_decode [] _ _ _ _ = []
do_decode (c:cs) n old_n fin_char t
      = if c >= n          -- we don't have this code in the table yet
        then decode_special (c:cs) n old_n fin_char t
        else outchs ++ do_decode cs n' c (head outchs) t'
        where
        outchs = reverse (unfold c (n-1) t)
        (n', t') = if n == max_entries
                   then (n, t)
                   else (n+1, insert n (SOME old_n, head outchs) t)

{- decode_special decodes a code that isn't in the table.
 -
 - The algorithm in Welch describes why this works, suffice it to say that
 - the output string is given by the last character output and the string
 - given by the previous code. An entry is also made in the table for the
 - last character output and the old code.
 -}

decode_special (c:cs) n old_n fin_char t
      = outchs ++ do_decode cs n' c (head outchs) t'
        where
        outchs = reverse (fin_char : unfold old_n (n-1) t)
        (n', t') = if n == max_entries
                   then (n, t)
                   else (n+1, insert n (SOME old_n, fin_char) t)

{- unfold a prefix code.
 -
 - chain back through the prefixes outputting the extension characters as we
 - go.
 -}

unfold n t_len t
      = if prefix == NONE
        then [c]
        else c : unfold n' t_len t
        where
        (prefix, c) = lookup n t
        SOME n' = prefix

data DecompTable = Branch DecompTable DecompTable | Leaf (Optional Int, Char) deriving (Show{-was:Text-})

{- Insert a code pair into the table. The position of the code is given by
 - the breakdown of the key into its binary digits
 -}

insert n v t = insert' (dec_to_binx code_bits n) v t

{- We can place a code exactly where it belongs using the following algorithm.
 - Take the code's binary rep expanded to the maximum number of bits. Start
 - at the first bit, if a 0 then insert the code to the left, if a 1 then
 - insert to the right. Carry on with the other bits until we run out and are
 - thus at the right place and can construct the node.
 -}

insert' [] v (Leaf _)
      = Leaf v
insert' ('0' : bs) v (Branch l r)
      = Branch (insert' bs v l) r
insert' ('1' : bs) v (Branch l r)
      = Branch l (insert' bs v r)
insert' ('0' : bs) v t
      = Branch (insert' bs v t) t
insert' ('1' : bs) v t
      = Branch t (insert' bs v t)

{- For a lookup we use the same mechanism to locate the position of the item
 - in the tree but if we find that the route has not been constructed or the
 - node has the dummy value then that code is not yet in the tree. The way
 - in which the decode algorithm works this should never happen.
 -}

lookup n t = lookup' (dec_to_binx code_bits n) t

lookup' [] (Leaf v)
      = v
lookup' ('0' : bs) (Branch l _)
      = lookup' bs l
lookup' ('1' : bs) (Branch _ r)
      = lookup' bs r
lookup' _  _ = error "tree insert error - seek professional help"

init_table = mk_init_table 0 (Leaf (SOME 99999, '@'))

mk_init_table 256 t = t
mk_init_table n t = mk_init_table (n+1) (insert n (NONE, toEnum n) t)

{-
 - Defaults.hs
 -
 - Contains the tuning values for compress and uncompress
 -
 -}

module Defaults
where

-- Maximum number of table entries (probably = 2^code_bits)

max_entries :: Int
max_entries = 2 ^ code_bits

-- First code value available

first_code :: Int
first_code = 256

-- Number of bits per output character

ascii_bits :: Int
ascii_bits = 8

-- Number of bits to represent code by

code_bits :: Int
code_bits = 12
{-
 - Encode Mk 2, using a prefix table for the codes
 - 
 - Paul Sanders, Systems Research, British Telecom Laboratories 1992
 -}

module Encode (encode) where

import Defaults
import PTTrees

-- for convenience we make the code table type explicit

type CodeTable = PrefixTree Char Int

-- encode sets up the arguments for the real function.

encode :: String -> [Int]
encode input = encode' input first_code initial_table

{-
 - encode' loops through the input string assembling the codes produced
 - by code_string.  The first character is treated specially in that it
 - is not added to the table; its code is simply its ascii value.
 -}

encode' [] _ _ 
  = []
encode' input v t
  = case (code_string input 0 v t) of { (input', n, t') ->
      n : encode' input' (v + 1) t'
    }

{-
 - code_string parses enough of the input string to produce one code and
 - returns the remaining input, the code and a new code table.
 -
 - The first character is taken and its place found in the code table. The
 - extension code table found for this character is then used as the lookup
 - table for the next character.
 -
 - If a character is not found in the current table then output the code
 - of the character associated with the current table and add the current
 - character to the current table and assign it the next new code value.
 -}

code_string input@(c : input2) old_code next_code (PT p@(PTE k v t) l r)
   | c < k = (f1 r1 p r)
   | c > k = (f2 r2 p l)
   | otherwise = (f3 r3 k v l r)
 where
   r1 = code_string input old_code next_code l
   r2 = code_string input old_code next_code r
   r3 = code_string input2 v next_code t

   f1 (input_l,nl,l2) p r   = (input_l,nl,PT p l2 r)
   f2 (input_r,nr,r2) p l   = (input_r,nr,PT p l r2)
   f3 (input2,n,t2) k v l r = (input2, n, PT (PTE k v t2) l r)

code_string input@(c : input_file2) old_code next_code PTNil
  | next_code >= 4096 = (input, old_code, PTNil)
  | otherwise = (input, old_code, PT (PTE c next_code PTNil) PTNil PTNil)

code_string [] old_code next_code code_table
  = ([], old_code, PTNil)

{-
 - We want the inital table to be balanced, but this is expensive to compute
 - as a rebalance is needed evert two inserts (yuk!). So we do the ordinary
 - infix-order binary tree insert but give the keys in such an order as to
 - give a balanced tree.
 -
 - (I would have defined the tree by hand but the constant was too big
 -  for hc-0.41)
 -}

initial_table :: CodeTable
initial_table = foldr tab_insert PTNil balanced_list

tab_insert n = insert (toEnum n) n

balanced_list
    = [128,64,32,16,8,4,2,1,0,3,6,5,7,12,10,9,11,14,13,15,24,20,18,17,19,22,
       21,23,28,26,25,27,30,29,31,48,40,36,34,33,35,38,37,39,44,42,41,43,46,
       45,47,56,52,50,49,51,54,53,55,60,58,57,59,62,61,63,96,80,72,68,66,65]
      ++ bal_list2 ++ bal_list3 ++ bal_list4 ++ bal_list5

bal_list2
    = [67,70,69,71,76,74,73,75,78,77,79,88,84,82,81,83,86,85,87,92,90,89,91,
       94,93,95,112,104,100,98,97,99,102,101,103,108,106,105,107,110,109,111,
       120,116,114,113,115,118,117,119,124,122,121,123,126,125,127,192,160]

bal_list3
    = [144,136,132,130,129,131,134,133,135,140,138,137,139,142,141,143,152,
       148,146,145,147,150,149,151,156,154,153,155,158,157,159,176,168,164,
       162,161,163,166,165,167,172,170,169,171,174,173,175,184,180,178,177]

bal_list4
    = [179,182,181,183,188,186,185,187,190,189,191,224,208,200,196,194,193,
       195,198,197,199,204,202,201,203,206,205,207,216,212,210,209,211,214,
       213,215,220,218,217,219,222,221,223,240,232,228,226,225,227,230,229,
       231,236,234,233,235,238,237,239,248,244,242,241,243,246,245,247,252]
bal_list5
    = [250,249,251,254,253,255]
module Main (main){-export list added by partain-} where {

-- partain: with "ghc -cpp -DSLEAZY_UNBOXING", you get (guess what)?
-- without it, you get the code as originally written.
--
-- Things done here:
--  * The obvious unboxing (e.g., Int ==> Int#).
--  * use quot/rem, not div/mod
--  * inline PrefixElement type into PrefixTree.PT constructor
--  * cvt final clause of 3-way comparison to "otherwise"
--  * use shifts, not quot/rem (not necessary: C compiler converts
--    them just fine)
--
-- Obviously, more egregious hacking could be done:
--  * replace Tuple/List types that mention Ints with specialised
--    variants

#if defined(__GLASGOW_HASKELL__) && defined(SLEAZY_UNBOXING)
#define FAST_INT Int#
#define ILIT(x) (x#)
#define IBOX(x) (I# (x))
#define _ADD_ `plusInt#`
#define _SUB_ `minusInt#`
#define _MUL_ `timesInt#`
#define _DIV_ `divInt#`
#define _QUOT_ `quotInt#`
#define _REM_ `remInt#`
#define _NEG_ negateInt#
#define _EQ_ `eqInt#`
#define _LT_ `ltInt#`
#define _LE_ `leInt#`
#define _GE_ `geInt#`
#define _GT_ `gtInt#`
#define _CHR_ chr#

#define FAST_BOOL Int#
#define _TRUE_ 1#
#define _FALSE_ 0#
#define _IS_TRUE_(x) ((x) `eqInt#` 1#)

#define FAST_CHAR Char#
#define CBOX(x) (C# (x))

data FAST_TRIPLE = TRIP [Char] Int# PrefixTree;
#define _TRIP_(a,b,c) (TRIP (a) (b) (c))

#define PrefixElement FAST_CHAR FAST_INT PrefixTree
#define _PTE_(a,b,c) (a) (b) (c)

#else {- ! __GLASGOW_HASKELL__ -}

#define FAST_INT Int
#define ILIT(x) (x)
#define IBOX(x) (x)
#define _ADD_ +
#define _SUB_ -
#define _MUL_ *
#define _DIV_ `div`
#define _QUOT_ `quot`
#define _REM_ `rem`
#define _NEG_ -
#define _EQ_ ==
#define _LT_ <
#define _LE_ <=
#define _GE_ >=
#define _GT_ >
#define _CHR_ toEnum

#define FAST_BOOL Bool
#define _TRUE_ True
#define _FALSE_ False
#define _IS_TRUE_(x) (x)

#define FAST_CHAR Char
#define CBOX(x) (x)

type FAST_TRIPLE = ([Char], Int, PrefixTree);
#define _TRIP_(a,b,c) ((a), (b), (c))

data PrefixElement = PTE FAST_CHAR FAST_INT PrefixTree;
#define _PTE_(a,b,c) (PTE (a) (b) (c))

#endif  {- ! __GLASGOW_HASKELL__ -}

-- end of partain

data PrefixTree = PTNil | PT PrefixElement PrefixTree PrefixTree;

--create_code_table :: PrefixTree; -- partain: sig

create_code_table = create_code_table2 ILIT(0) ILIT(256);

    create_code_table2 :: FAST_INT -> FAST_INT -> PrefixTree;
    create_code_table2 first_code ILIT(0) = PTNil;
    create_code_table2 first_code ILIT(1)
    =   PT _PTE_((_CHR_ first_code), first_code, PTNil) PTNil PTNil;
    create_code_table2 first_code n_codes
    =   PT _PTE_((_CHR_ m_code), m_code, PTNil) left right
    where {
        left = create_code_table2 first_code (m_code _SUB_ first_code);
        right = create_code_table2 m_code2 ((first_code _ADD_ n_codes) _SUB_ m_code2);
        m_code = (first_code _ADD_ (first_code _ADD_ n_codes _SUB_ ILIT(1))) _QUOT_ ILIT(2);
        m_code2 = m_code _ADD_ ILIT(1);
    };

lzw_code_file :: [Char] -> PrefixTree -> FAST_INT -> [Int];
lzw_code_file [] code_table next_code = [];
lzw_code_file input code_table next_code
    =   -- partain: case-ified lazy where
      case (code_string input ILIT(0) next_code code_table) of {
	_TRIP_(input2,n,code_table2) ->
	    IBOX(n) : lzw_code_file input2 code_table2 (next_code _ADD_ ILIT(1))
      };

code_string :: [Char] -> FAST_INT -> FAST_INT -> PrefixTree -> FAST_TRIPLE;

#if defined(__GLASGOW_HASKELL__) && defined(SLEAZY_UNBOXING)
code_string input@(CBOX(c) : input2) old_code next_code (PT k v t {-p@(PTE k v t)-} l r)
    | CBOX(c) <  CBOX(k) = f1 r1 {-p-} k v t r
    | CBOX(c) >  CBOX(k) = f2 r2 {-p-} k v t l
    | otherwise {- CBOX(c) == CBOX(k) -} = f3 r3 k v l r
#else
code_string input@(CBOX(c) : input2) old_code next_code (PT p@(PTE k v t) l r)
    | CBOX(c) <  CBOX(k) = f1 r1 p r
    | CBOX(c) >  CBOX(k) = f2 r2 p l
    | otherwise {- CBOX(c) == CBOX(k) -} = f3 r3 k v l r
#endif
    where {
        r1 = code_string input old_code next_code l;
        r2 = code_string input old_code next_code r;
        r3 = code_string input2 v next_code t;

#if defined(__GLASGOW_HASKELL__) && defined(SLEAZY_UNBOXING)
        f1 _TRIP_(input_l,nl,l2) k v t r   = _TRIP_(input_l,nl,PT k v t l2 r);
        f2 _TRIP_(input_r,nr,r2) k v t l   = _TRIP_(input_r,nr,PT k v t l r2);
#else
        f1 _TRIP_(input_l,nl,l2) p r   = _TRIP_(input_l,nl,PT p l2 r);
        f2 _TRIP_(input_r,nr,r2) p l   = _TRIP_(input_r,nr,PT p l r2);
#endif
        f3 _TRIP_(input2,n,t2) k v l r = _TRIP_(input2, n, PT _PTE_(k, v, t2) l r);
    };

--code_string input@(c : input2) old_code next_code (PT p@(PTE k v t) l r)
--  | c < k = (input_l,nl,PT p l' r)
--  | c > k = (input_r,nr,PT p l r')
--  | c == k = (input',n,PT (PTE k v t') l r)
--  where {
--      (input_l,nl,l') = code_string input old_code next_code l;
--      (input_r,nr,r') = code_string input old_code next_code r;
--      (input',n,t') = code_string input2 v next_code t;
--  };

code_string input@(CBOX(c) : input_file2) old_code next_code PTNil
    =   if (next_code _GE_ ILIT(4096)) 
        then _TRIP_(input, old_code, PTNil)
        else _TRIP_(input, old_code, PT _PTE_(c, next_code, PTNil) PTNil PTNil);

code_string [] old_code next_code code_table = _TRIP_([], old_code, PTNil);

integer_list_to_char_list (IBOX(n) : l)
    =   CBOX(_CHR_ (n _QUOT_ ILIT(16))) : integer_list_to_char_list2 l n;
integer_list_to_char_list [] = [];

    integer_list_to_char_list2 (IBOX(c) : l) n
        =   CBOX(_CHR_ ((n _MUL_ ILIT(16)) _ADD_ ((c _QUOT_ ILIT(256)) _REM_ ILIT(16))))
	    : CBOX(_CHR_ c)
            : integer_list_to_char_list l;
    integer_list_to_char_list2 [] n = CBOX(_CHR_ (n _MUL_ ILIT(16))) : [];

main :: IO ();
main = getContents >>= \ input_string -> main2 input_string;

main2 :: String -> IO ();
main2 input_string
    = putStr output_list
    where {
        output_list = integer_list_to_char_list code_list;
        code_list = lzw_code_file input_string create_code_table ILIT(256);
    };

}
--	Lzw2.hs looks like an earlier version of Lzw.hs

module Main (main){-export list added by partain-} where {

-- partain: with "ghc -cpp -DSLEAZY_UNBOXING", you get (guess what)?
-- without it, you get the code as originally written.
--
-- Things done here:
--  * The obvious unboxing (e.g., Int ==> Int#).
--  * use quot/rem, not div/mod
--  * inline PrefixElement type into PrefixTree.PT constructor
--  * cvt final clause of 3-way comparison to "otherwise"
--  * use shifts, not quot/rem (not necessary: C compiler converts
--    them just fine)
--
-- Obviously, more egregious hacking could be done:
--  * replace Tuple/List types that mention Ints with specialised
--    variants

#define FAST_INT Int#
#define ILIT(x) (x#)
#define IBOX(x) (I# (x))
#define _ADD_ `plusInt#`
#define _SUB_ `minusInt#`
#define _MUL_ `timesInt#`
#define _DIV_ `divInt#`
#define _QUOT_ `quotInt#`
#define _REM_ `remInt#`
#define _NEG_ negateInt#
#define _EQ_ `eqInt#`
#define _LT_ `ltInt#`
#define _LE_ `leInt#`
#define _GE_ `geInt#`
#define _GT_ `gtInt#`
#define _CHR_ chr#

#define FAST_BOOL Int#
#define _TRUE_ 1#
#define _FALSE_ 0#
#define _IS_TRUE_(x) ((x) `eqInt#` 1#)

#define FAST_CHAR Char#
#define CBOX(x) (C# (x))

data FAST_TRIPLE = TRIP [Char] Int# PrefixTree;
#define _TRIP_(a,b,c) (TRIP (a) (b) (c))

#define PrefixElement FAST_CHAR FAST_INT PrefixTree
#define _PTE_(a,b,c) (a) (b) (c)

-- end of partain

data PrefixTree = PTNil | PT PrefixElement PrefixTree PrefixTree;

create_code_table = create_code_table2 ILIT(0) ILIT(256);

    create_code_table2 :: FAST_INT -> FAST_INT -> PrefixTree;
    create_code_table2 first_code ILIT(0) = PTNil;
    create_code_table2 first_code ILIT(1)
    =   PT _PTE_((_CHR_ first_code), first_code, PTNil) PTNil PTNil;
    create_code_table2 first_code n_codes
    =   PT _PTE_((_CHR_ m_code), m_code, PTNil) left right
    where {
        left = create_code_table2 first_code (m_code _SUB_ first_code);
        right = create_code_table2 m_code2 ((first_code _ADD_ n_codes) _SUB_ m_code2);
        m_code = (first_code _ADD_ (first_code _ADD_ n_codes _SUB_ ILIT(1))) _QUOT_ ILIT(2);
        m_code2 = m_code _ADD_ ILIT(1);
    };

lzw_code_file :: [Char] -> PrefixTree -> FAST_INT -> [Int];
lzw_code_file [] code_table next_code = [];
lzw_code_file input code_table next_code
    =   -- partain: case-ified lazy where
      case (code_string ILIT(0) next_code input code_table) of {
	_TRIP_(input2,n,code_table2) ->
	    IBOX(n) : lzw_code_file input2 code_table2 (next_code _ADD_ ILIT(1))
      };

code_string :: FAST_INT -> FAST_INT -> [Char] -> PrefixTree -> FAST_TRIPLE;

code_string old_code next_code input@(CBOX(c) : input2) (PT k v t {-p@(PTE k v t)-} l r)
    | CBOX(c) <  CBOX(k) = _scc_ "cs1" (f1 r1 {-p-} k v t r)
    | CBOX(c) >  CBOX(k) = _scc_ "cs2" (f2 r2 {-p-} k v t l)
    | otherwise {- CBOX(c) == CBOX(k) -} = _scc_ "cs3" (f3 r3 k v l r)
    where {
        r1 = code_string old_code next_code input  l;
        r2 = code_string old_code next_code input  r;
        r3 = code_string v        next_code input2 t;

        f1 _TRIP_(input_l,nl,l2) k v t r   = _TRIP_(input_l,nl,PT k v t l2 r);
        f2 _TRIP_(input_r,nr,r2) k v t l   = _TRIP_(input_r,nr,PT k v t l r2);
        f3 _TRIP_(input2,n,t2) k v l r = _TRIP_(input2, n, PT _PTE_(k, v, t2) l r);
    };

code_string old_code next_code input@(CBOX(c) : input_file2) PTNil
    =   if (next_code _GE_ ILIT(4096)) 
        then _scc_ "cs4" _TRIP_(input, old_code, PTNil)
        else _scc_ "cs5" _TRIP_(input, old_code, PT _PTE_(c, next_code, PTNil) PTNil PTNil);

code_string old_code next_code [] code_table = _scc_ "cs6" _TRIP_([], old_code, PTNil);

integer_list_to_char_list (IBOX(n) : l)
    =   CBOX(_CHR_ (n _QUOT_ ILIT(16))) : integer_list_to_char_list2 l n;
integer_list_to_char_list [] = [];

    integer_list_to_char_list2 (IBOX(c) : l) n
        =   CBOX(_CHR_ ((n _MUL_ ILIT(16)) _ADD_ ((c _QUOT_ ILIT(256)) _REM_ ILIT(16))))
	    : CBOX(_CHR_ c)
            : integer_list_to_char_list l;
    integer_list_to_char_list2 [] n = CBOX(_CHR_ (n _MUL_ ILIT(16))) : [];

main :: IO ();
main = getContents >>= \input_string -> main2 input_string;

main2 :: String -> IO ();
main2 input_string
    = putStr output_list
    where {
        output_list = integer_list_to_char_list code_list;
        code_list = lzw_code_file input_string create_code_table ILIT(256);
    };

}
{-
 - Compress.hs
 - 
 - This program is a version of the compress utility as defined in
 - "A Technique for High Performance Data Compression", Terry A. Welch,
 - Computer, vol 17, no 6 1984, pp 8-19
 -
 - Usage: compress file
 -
 - Paul Sanders, Systems Research Division, British Telecom Laboratories 1992
 -
 -}

module Main (main) where

import Defaults   
import BinConv	  -- binary conversion routines
import Encode     -- coding routine


main = getContents >>= \ inp ->
	putStr (compress inp)

{- To compress a string we first encode it, then convert it to n-bit binaries
 - convert back to decimal as ascii-bit values and then to characters
 -}

compress = map toEnum . codes_to_ascii . encode
module PTTrees (insert, PrefixTree(..), PrefixElem(..)) where

data PrefixTree a b = PTNil |
                      PT (PrefixElem a b) (PrefixTree a b) (PrefixTree a b)

data PrefixElem a b = PTE a b (PrefixTree a b)

{-partain-}
--insert :: Char -> Int -> PrefixTree Char Int -> PrefixTree Char Int
{-partain-}

insert k v PTNil = 
	PT (PTE k v PTNil) PTNil PTNil
insert k v (PT p@(PTE k' v' t) l r)
	| k < k'  = PT p (insert k v l) r
        | k > k'  = PT p l (insert k v r)
        | otherwise = PT p l r
{-
 - Uncompress.hs
 - 
 - This program is a version of the compress utility as defined in
 - "A Technique for High Performance Data Compression", Terry A. Welch,
 - Computer, vol 17, no 6 1984, pp 8-19
 -
 -
 - Paul Sanders, Systems Research Division, British Telecom Laboratories 1992
 -
 -}

module Main (main) where

import Defaults
import BinConv	  -- binary conversion routines
import Decode     -- decoding routines

main = getContents >>= \ inp ->
	putStr (uncompress inp)

{- To uncompress a string we first convert the characters to n-bit binaries
 - and then to decimals which can then be decoded.
 -}

uncompress = decode . ascii_to_codes . map fromEnum

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.