\ quadratic.fs
\
\ Solve for the two complex solutions of the quadratic equation:
\
\ a*x^2 + b*x + c = 0
\
\ Assume a, b, and c are real. The two complex roots are
\ z1 = x1r + i*x1i and z2 = x2r + i*x2i
\
\ 2002, K. Myneni, krishna.myneni@ccreweb.org
\ Permission is granted to modify and use this code
\ for any application, provided this notice is preserved.
\
\ Notes:
\
\ 1. Ensure that argument "a" is not zero, or an infinity will result;
\ the correct solution of the simple linear equation will not be
\ given.
\
\ 2. The returned roots are unordered.
\
\ Revisions:
\
\ 2002-11-02 km; first version.
\ 2003-10-25 Christopher Brannon; fixed problem with calculation
\ of complex roots.
\ 2007-11-04 km; revised comments; added test code; save and restore base.
\ 2009-08-05 km; revised to preserve accuracy when the product a*c is
\ much less than b^2; see [1]. Added new test case.
\
\ References:
\
\ 1. W.H. Press, et. al., Numerical Recipes in C, 2nd ed., pp. 183--184,
\ eqns. 5.6.4 and 5.6.5.
include lib/ansfloat.4th
include lib/ansfpio.4th
:MACRO -> => ;
:MACRO TEST-CODE? true ;
CR .( QUADRATIC V1.1 05 August 2009 KM )
BASE @ DECIMAL
fvariable qa
fvariable 2qa
fvariable qb
fvariable qc
: solve_quadratic ( F: a b c -- x1r x1i x2r x2i )
( F: a b c -- z1 z2 )
qc f! qb f! fdup qa f! F% 2e f* 2qa f!
qb f@ fdup f* F% 4e qa f@ f* qc f@ f* f- \ square root term
fdup f0<
IF
\ complex conjugate roots
fabs fsqrt 2qa f@ f/ \ imaginary part
qb f@ fnegate 2qa f@ f/ \ real part
fswap
fover fover fnegate \ complex conjugate
ELSE
\ two real roots
fsqrt qb f@ fdup f0< IF f- ELSE f+ fnegate THEN F% 2e f/
fdup qc f@ fswap f/ F% 0e frot qa f@ f/ F% 0e
THEN
;
BASE !
TEST-CODE? [IF] \ test code ==============================================
[undefined] T{ [IF] include lib/ttester.4th [THEN]
BASE @ DECIMAL
F% 1e-15 rel-near F!
F% 1e-256 abs-near F!
set-near
\ Examples from:
\
\ http://www.purplemath.com/modules/quadform.htm
F% -2e F% 3e F/ fconstant -2/3
F% -3e F% 2e F/ fconstant -3/2
F% 5e fsqrt fconstant sqrt{5}
F% 2e fsqrt F% 3e F/ fconstant sqrt{2}/3
F% 3e fsqrt F% 2e F/ fconstant sqrt{3}/2
F% 10e fsqrt F% 2e F/ fconstant sqrt{10}/2
CR
\ TESTING SOLVE_QUADRATIC
t{ F% 1e F% 3e F% -4e solve_quadratic -> F% 1e F% 0e F% -4e F% 0e rrrr}t
t{ F% 2e F% -4e F% -3e solve_quadratic -> F% 1e sqrt{10}/2 F- F% 0e F% 1e sqrt{10}/2 F+ F% 0e rrrr}t
t{ F% 1e F% -2e F% -4e solve_quadratic -> F% 1e sqrt{5} F- F% 0e f% 1e sqrt{5} F+ F% 0e rrrr}t
t{ F% 9e F% 12e F% 4e solve_quadratic -> -2/3 F% 0e -2/3 F% 0e rrrr}t
t{ F% 3e F% 4e F% 2e solve_quadratic -> -2/3 sqrt{2}/3 -2/3 sqrt{2}/3 fnegate rrrr}t
t{ F% 1e F% 3e F% 3e solve_quadratic -> -3/2 sqrt{3}/2 -3/2 sqrt{3}/2 fnegate rrrr}t
\ Test case which loses accuracy with ordinary quadratic formula:
\
\ x^2 + x + c = 0
\
\ when c << 1, the approximate solution is x1 = -c, x2 = -1 + c
\
t{ F% 1e F% 1e F% 1e-17 solve_quadratic -> F% -1e-17 F% 0e F% -1e F% 1e-17 f+ F% 0e rrrr}t
BASE !
[THEN]
|