
Green Flash: Application Driven System 
Design for Power Efficient HPC

John Shalf

David Donofrio, Leonid Oliker, Michael Wehner

And many other CRD and NERSC staff

Salishan, April 2009



Summary

• We propose a new approach to scientific computing that 
enables transformational changes for science

–Choose the science target first (climate in this case)
–Design systems for applications (rather than the reverse)

–Design hardware, software, scientific algorithms together 
using hardware emulation (RAMP) and auto-tuning

–This is the right way to design efficient HPC systems!

Apply approach to broad range of Exascale-class      
scientific applications



Global Cloud System Resolving Models 
are a Transformational Change

1km
Cloud system resolving 

models

25km
Upper limit of climate 

models with cloud 
parameterizations

200km
Typical resolution 

of IPCC AR4 models



Requirements for 1km Climate Computer

Must maintain 1000x faster than real 
time for practical climate simulation

• ~2 million horizontal subdomains

• 100 Terabytes of Memory
–5MB memory per subdomain

• ~20 million total subdomains 
–20 PF sustained (200PF peak)

–Nearest-neighbor communication

• New discretization for climate model

–CSU Icosahedral Code

fvCAM

Icosahedral



Low-Power Design Principles

• Cubic power improvement with 
lower clock rate due to V2F

• Slower clock rates enable use 
of simpler cores

• Simpler cores use less area 
(lower leakage) and reduce 
cost

• Tailor design to application to 
REDUCE WASTE

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

This is how iPhones and MP3 players are designed to maximize battery life 
and minimize cost



Low-Power Design Principles

• Power5 (server) 
– 120W@1900MHz
– Baseline

• Intel Core2 sc (laptop) :
– 15W@1000MHz
– 4x more FLOPs/watt than 

baseline 

• Intel Atom (handhelds)
– 0.625W@800MHz
– 80x more

• Tensilica XTensa (Moto Razor) : 

– 0.09W@600MHz
– 400x more (80x-120x sustained)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5



Processor
Generator
(Tensilica) Build with any 

process in any fabTailored SW Tools: 
Compiler, debugger, 

simulators, Linux,
other OS Ports
(Automatically 

generated together 
with the Core)

Application-
optimized processor 

implementation 
(RTL/Verilog)

Base CPU

Apps
Datapaths

OCD

Timer

FPUExtended Registers

Cache

Embedded Design Automation
(Example from Existing Tensilica Design Flow)

Processor configuration
1. Select from menu
2. Automatic instruction 

discovery (XPRES Compiler)
3. Explicit instruction 

description (TIE)



Advanced Hardware Simulation (RAMP)
Enabling Hardware/Software/Science Co-Design

• Research Accelerator for Multi-Processors 
(RAMP)
– Simulate hardware before it is built!
– Break slow feedback loop for system designs
– Enables tightly coupled hardware/software/science 

     co-design (not possible using conventional approach)



Auto-tuning

• Problem: want to compare best 
potential performance of diverse 
architectures, avoiding
– Non-portable code
– Labor-intensive user 

optimizations for each specific 
architecture

• Our Solution: Auto-tuning
– Automate search across a 

complex optimization space 
– Achieve performance far 

beyond current compilers
– achieve performance 

portability for diverse 
architectures!

AMD Opteron
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Traditional New Architecture
Hardware/Software Design

Cycle Time
4-6+ years

Design New System 
(2 year concept phase)

Port Application

Build
Hardware
(2 years)

Tune
Software
(2 years)
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Proposed New Architecture
Hardware/Software Co-Design

Cycle Time
1-2 days

AMD Opteron
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Climate System Design Concept
Strawman Design Study

10PF sustained

~120 m
2

<3MWatts

< $75M

32 boards 
per rack

100 racks @ 
~25KW

power + comms

32 chip  + memory 
clusters per board  (2.7 

TFLOPS @ 700W

VLIW CPU: 
• 128b load-store + 2 DP MUL/ADD + integer op/ DMA 

per cycle:
• Synthesizable at 650MHz in commodity 65nm 
• 1mm2 core, 1.8-2.8mm2 with inst cache, data cache 

data RAM,  DMA interface, 0.25mW/MHz
• Double precision SIMD  FP : 4 ops/cycle (2.7GFLOPs)
• Vectorizing compiler, cycle-accurate simulator, 

debugger GUI (Existing part of Tensilica Tool Set)
• 8 channel DMA for streaming from on/off chip DRAM
• Nearest neighbor 2D communications grid
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Green Flash Strawman 
System Design In 2008

We examined three different approaches:

• AMD Opteron: Commodity approach, lower efficiency for 
scientific applications offset by cost efficiencies of mass market

• BlueGene: Generic embedded processor core and customize 
system-on-chip (SoC) services to improve power efficiency for 
scientific applications

• Tensilica XTensa:  Customized embedded CPU w/SoC provides 
further power efficiency benefits but maintains programmability

Processor Clock Peak/
Core
(Gflops)

Cores/
Socket

Sockets Cores Power Cost

2008

AMD Opteron 2.8GHz 5.6 2 890K 1.7M 179 MW $1B+

IBM BG/P 850MHz 3.4 4 740K 3.0M 20 MW $1B+

Green Flash / 
Tensilica XTensa

650MHz 2.7 32 120K 4.0M 3 MW $75M



Green Flash Hardware Demo

• Demonstrated during SC ‘08

• Proof of concept 
–CSU atmospheric model ported 

to Tensilica Architecture
–Single Tensilica processor 

running atmospheric model at 
50MHz

• Emulation performance 
advantage

–Processor running at 50MHz 
vs. Functional model at 100 
kHz

–500x Speedup

• Actual code running - not 
representative benchmark



What Have We Learned?



Configurable Processor Family

RTL

RTL

RTL

Peel Back the Historical Growth of 
Instruction Sets (accretion of cruft)
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A Short List of x86 Opcodes that 
Science Applications Don’t Need!



More Wasted Opcodes

•We only need 80 out of the nearly 300 ASM instructions in the x86 
instruction set!

•Still have all of the 8087 and 8088 instructions!
•Wide SIMD Doesn’t Make Sense with Small Cores
•Neither does Cache Coherence
•Neither does HW Divide or Sqrt for loops 

•Creates pipeline bubbles
•Better to unroll it across the loops (like IBM MASS libraries)

•Move TLB to memory interface because its still too huge (but still get 
precise exceptions from segmented protection on each core)



Architectural Support for Pmodels
Make hardware easier to program!

• Logical topology is a full 
crossbar

• Each local store mapped to 
global address space

• To initiate a DMA transfer 
between processors:

–Processors exchange starting 
addresses through TIE Queue 
interface

• Optimized for small transfers
–When ready, copy done 

directly from LS to LS 
–Copy will bypass cache 

hierarchy

NVRAM 
(FLASH) for 

fault resilience



CMP Architecture - Physical View

• Concentrated 
torus 

–Direct connect 
between 4 
processors on a 
tile

–Packet switched 
network connecting 
tiles

• Between 64 and 
128 processors 
per die



Memory: Perhaps we don’t need 
1 Byte/FLOP (Scripted Memory Movement)

• Trace analysis key to 
memory requirements

– Actually running the code 
gives realistic values for 
memory footprint, temporal 
reuse, DRAM bandwidth 
requirements

• Memory footprint: unique 
addresses accessed  
size of local store needed

• Temporal reuse: maximum 
number of addresses 
which will be reused at any 
time  size of cache 
needed

• DRAM bandwidth
– (instruction throughput) X 

(memory footprint)/
(instruction count)



Hardware Support for PGAS

Discretization
  128 vertical levels
  20M horizontal

Design Trade-offs
• pack fewer cores in 
socket to minimize memory 
bandwidth
• maximize cores in socket 
to minimize surface-to-
volume ratio 



Silicon Photonics for Energy-
Efficient Communication

• Silicon photonics 
enables optics to be 
integrated with 
conventional CMOS

• Enables up to 27x 
improvement in 
communication energy 
efficiency!

Silicon Photonic
Ring Resonator



Technology Continuity for 
A Sustainable Hardware Ecosystem

Need building blocks for a compelling environment at 
all scales



Summary

• We propose a new approach to scientific computing that 
enables transformational changes for science

–Choose the science target first (climate in this case)
–Design systems for applications (rather than the reverse)

–Design hardware, software, scientific algorithms together 
using hardware emulation and auto-tuning

–This is the right way to design efficient HPC systems!

Apply approach to broad range of Exascale-class      
scientific applications



Our Approach

• Identify target applications FIRST
–Demonstrate using Climate Application (Green Flash)

• Tailor system to requirements of target scientific 
problem

–Use design principles from embedded computing

• Tightly couple hardware/software/science development
–Simulate hardware before you build it (RAMP)
–Use applications as the test, not kernels (V&V)
–Automate software tuning process (AutoTuning)



Processor Power and Performance
Embedded Application-Specific Cores

Performance on EEMBC benchmarks aggregate for Consumer, Telecom, Office, Network, based on ARM1136J-S (Freescale i.MX31), 
ARM1026EJ-S, Tensilica Diamond 570T,  T1050 and T1030, MIPS 20K, NECVR5000).  MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM 
968E-S, ARM 966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family.  All power figures from 
vendor websites, 2/23/2006.

Courtesy of Chris Rowen, Tensilica Inc.
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