
Green Flash: Application Driven System
Design for Power Efficient HPC

John Shalf

David Donofrio, Leonid Oliker, Michael Wehner

And many other CRD and NERSC staff

Salishan, April 2009

Summary

• We propose a new approach to scientific computing that
enables transformational changes for science

–Choose the science target first (climate in this case)
–Design systems for applications (rather than the reverse)

–Design hardware, software, scientific algorithms together
using hardware emulation (RAMP) and auto-tuning

–This is the right way to design efficient HPC systems!

Apply approach to broad range of Exascale-class
scientific applications

Global Cloud System Resolving Models
are a Transformational Change

1km
Cloud system resolving

models

25km
Upper limit of climate

models with cloud
parameterizations

200km
Typical resolution

of IPCC AR4 models

Requirements for 1km Climate Computer

Must maintain 1000x faster than real
time for practical climate simulation

• ~2 million horizontal subdomains

• 100 Terabytes of Memory
–5MB memory per subdomain

• ~20 million total subdomains
–20 PF sustained (200PF peak)

–Nearest-neighbor communication

• New discretization for climate model

–CSU Icosahedral Code

fvCAM

Icosahedral

Low-Power Design Principles

• Cubic power improvement with
lower clock rate due to V2F

• Slower clock rates enable use
of simpler cores

• Simpler cores use less area
(lower leakage) and reduce
cost

• Tailor design to application to
REDUCE WASTE

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

This is how iPhones and MP3 players are designed to maximize battery life
and minimize cost

Low-Power Design Principles

• Power5 (server)
– 120W@1900MHz
– Baseline

• Intel Core2 sc (laptop) :
– 15W@1000MHz
– 4x more FLOPs/watt than

baseline

• Intel Atom (handhelds)
– 0.625W@800MHz
– 80x more

• Tensilica XTensa (Moto Razor) :

– 0.09W@600MHz
– 400x more (80x-120x sustained)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Processor
Generator
(Tensilica) Build with any

process in any fabTailored SW Tools:
Compiler, debugger,

simulators, Linux,
other OS Ports
(Automatically

generated together
with the Core)

Application-
optimized processor

implementation
(RTL/Verilog)

Base CPU

Apps
Datapaths

OCD

Timer

FPUExtended Registers

Cache

Embedded Design Automation
(Example from Existing Tensilica Design Flow)

Processor configuration
1. Select from menu
2. Automatic instruction

discovery (XPRES Compiler)
3. Explicit instruction

description (TIE)

Advanced Hardware Simulation (RAMP)
Enabling Hardware/Software/Science Co-Design

• Research Accelerator for Multi-Processors
(RAMP)
– Simulate hardware before it is built!
– Break slow feedback loop for system designs
– Enables tightly coupled hardware/software/science

 co-design (not possible using conventional approach)

Auto-tuning

• Problem: want to compare best
potential performance of diverse
architectures, avoiding
– Non-portable code
– Labor-intensive user

optimizations for each specific
architecture

• Our Solution: Auto-tuning
– Automate search across a

complex optimization space
– Achieve performance far

beyond current compilers
– achieve performance

portability for diverse
architectures!

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

Total Gflop/s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naveﾕ

3.5x

Traditional New Architecture
Hardware/Software Design

Cycle Time
4-6+ years

Design New System
(2 year concept phase)

Port Application

Build
Hardware
(2 years)

Tune
Software
(2 years)

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

Total Gflop/s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Na veﾕ

How long does it
take for a full
scale application
to influence
architectures?

Proposed New Architecture
Hardware/Software Co-Design

Cycle Time
1-2 days

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

Total Gflop/s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Na veﾕ

Synthesize SoC (hours)

Build application

Emulate
Hardware
(RAMP)
(hours)

Autotune
Software
(Hours)

How long does it
take for a full
scale application
to influence
architectures?

Climate System Design Concept
Strawman Design Study

10PF sustained

~120 m
2

<3MWatts

< $75M

32 boards
per rack

100 racks @
~25KW

power + comms

32 chip + memory
clusters per board (2.7

TFLOPS @ 700W

VLIW CPU:
• 128b load-store + 2 DP MUL/ADD + integer op/ DMA

per cycle:
• Synthesizable at 650MHz in commodity 65nm
• 1mm2 core, 1.8-2.8mm2 with inst cache, data cache

data RAM, DMA interface, 0.25mW/MHz
• Double precision SIMD FP : 4 ops/cycle (2.7GFLOPs)
• Vectorizing compiler, cycle-accurate simulator,

debugger GUI (Existing part of Tensilica Tool Set)
• 8 channel DMA for streaming from on/off chip DRAM
• Nearest neighbor 2D communications grid

Proc
Array

RAM RAM

RAM RAM

8 DRAM per
processor chip:

~50 GB/s

CPU
64-128K D

2x128b

32K
I

8
chan
DMA

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

O
p

t. 8
M

B
 e

m
b

e
d

d
e

d
 D

R
A

M

External DRAM interface

External DRAM interface

E
xte

rn
a

l D
R

A
M

 in
te

rfa
ce

E
xte

rn
a

l D
R

A
M

 in
te

rfa
ce

Master
Processor

Comm Link
Control

32 processors per 65nm chip
83 GFLOPS @ 7W

Green Flash Strawman
System Design In 2008

We examined three different approaches:

• AMD Opteron: Commodity approach, lower efficiency for
scientific applications offset by cost efficiencies of mass market

• BlueGene: Generic embedded processor core and customize
system-on-chip (SoC) services to improve power efficiency for
scientific applications

• Tensilica XTensa: Customized embedded CPU w/SoC provides
further power efficiency benefits but maintains programmability

Processor Clock Peak/
Core
(Gflops)

Cores/
Socket

Sockets Cores Power Cost

2008

AMD Opteron 2.8GHz 5.6 2 890K 1.7M 179 MW $1B+

IBM BG/P 850MHz 3.4 4 740K 3.0M 20 MW $1B+

Green Flash /
Tensilica XTensa

650MHz 2.7 32 120K 4.0M 3 MW $75M

Green Flash Hardware Demo

• Demonstrated during SC ‘08

• Proof of concept
–CSU atmospheric model ported

to Tensilica Architecture
–Single Tensilica processor

running atmospheric model at
50MHz

• Emulation performance
advantage

–Processor running at 50MHz
vs. Functional model at 100
kHz

–500x Speedup

• Actual code running - not
representative benchmark

What Have We Learned?

Configurable Processor Family

RTL

RTL

RTL

Peel Back the Historical Growth of
Instruction Sets (accretion of cruft)

Memory
Systems

Processor
Control

System
Interface

Computation
Instruction
Set

Gen 1

Interrupts

Debug

Memory
Protection

Timers

MMU
Secure
Rings

Inst
Cache

Data
Cache

Write-back
Cache

Tightly
Coupled
Memories

Coherent
Caches

Bus
Bridges

Block
Data
BusSlave DMA

Access

MP Split
TransactionData

Streaming
Ports

Input/Output
Wires

16b GP DSP

24b Audio

Image
multimedia

Encryption

Superscalar

Packet
processing

Special-
Purpose
DSP

Gen 2

Gen 3

Gen 4

Base

Area = silicon cost and power

Traditional Processor Family

Time per variant: years Time per variant: days

Memory
Systems

Processor
Control

System
Interface

Computation
Instruction
Set

Interrupts

Debug

Memory
Protection

Timers

MMU
Secure
Rings

Inst
Cache

Data
Cache

Write-back
Cache

Tightly
Coupled
Memories

Coherent
Caches

Bus
Bridges

Block
Data
BusSlave DMA

Access

MP Split
Transaction

Data
Streaming
Ports

Input/Output
Wires

16b GP DSP

24b Audio

Encryption

Superscalar

Packet
processing

Special-
Purpose
DSP

Image
multimedia

From Chris Rowen (Tensilica Inc)

A Short List of x86 Opcodes that
Science Applications Don’t Need!

More Wasted Opcodes

•We only need 80 out of the nearly 300 ASM instructions in the x86
instruction set!

•Still have all of the 8087 and 8088 instructions!
•Wide SIMD Doesn’t Make Sense with Small Cores
•Neither does Cache Coherence
•Neither does HW Divide or Sqrt for loops

•Creates pipeline bubbles
•Better to unroll it across the loops (like IBM MASS libraries)

•Move TLB to memory interface because its still too huge (but still get
precise exceptions from segmented protection on each core)

Architectural Support for Pmodels
Make hardware easier to program!

• Logical topology is a full
crossbar

• Each local store mapped to
global address space

• To initiate a DMA transfer
between processors:

–Processors exchange starting
addresses through TIE Queue
interface

• Optimized for small transfers
–When ready, copy done

directly from LS to LS
–Copy will bypass cache

hierarchy

NVRAM
(FLASH) for

fault resilience

CMP Architecture - Physical View

• Concentrated
torus

–Direct connect
between 4
processors on a
tile

–Packet switched
network connecting
tiles

• Between 64 and
128 processors
per die

Memory: Perhaps we don’t need
1 Byte/FLOP (Scripted Memory Movement)

• Trace analysis key to
memory requirements

– Actually running the code
gives realistic values for
memory footprint, temporal
reuse, DRAM bandwidth
requirements

• Memory footprint: unique
addresses accessed
size of local store needed

• Temporal reuse: maximum
number of addresses
which will be reused at any
time size of cache
needed

• DRAM bandwidth
– (instruction throughput) X

(memory footprint)/
(instruction count)

Hardware Support for PGAS

Discretization
 128 vertical levels
 20M horizontal

Design Trade-offs
• pack fewer cores in
socket to minimize memory
bandwidth
• maximize cores in socket
to minimize surface-to-
volume ratio

Silicon Photonics for Energy-
Efficient Communication

• Silicon photonics
enables optics to be
integrated with
conventional CMOS

• Enables up to 27x
improvement in
communication energy
efficiency!

Silicon Photonic
Ring Resonator

Technology Continuity for
A Sustainable Hardware Ecosystem

Need building blocks for a compelling environment at
all scales

Summary

• We propose a new approach to scientific computing that
enables transformational changes for science

–Choose the science target first (climate in this case)
–Design systems for applications (rather than the reverse)

–Design hardware, software, scientific algorithms together
using hardware emulation and auto-tuning

–This is the right way to design efficient HPC systems!

Apply approach to broad range of Exascale-class
scientific applications

Our Approach

• Identify target applications FIRST
–Demonstrate using Climate Application (Green Flash)

• Tailor system to requirements of target scientific
problem

–Use design principles from embedded computing

• Tightly couple hardware/software/science development
–Simulate hardware before you build it (RAMP)
–Use applications as the test, not kernels (V&V)
–Automate software tuning process (AutoTuning)

Processor Power and Performance
Embedded Application-Specific Cores

Performance on EEMBC benchmarks aggregate for Consumer, Telecom, Office, Network, based on ARM1136J-S (Freescale i.MX31),
ARM1026EJ-S, Tensilica Diamond 570T, T1050 and T1030, MIPS 20K, NECVR5000). MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM
968E-S, ARM 966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family. All power figures from
vendor websites, 2/23/2006.

Courtesy of Chris Rowen, Tensilica Inc.

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200

Power
(core mW)

Performance
(ARM1136 @ 333MHz = 1.0)

50x performance/watt

Conventional Embedded Core

Application-Targeted Core

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

