Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/386/go/src/compress/flate/huffman_bit_writer.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package flate

import (
	"io"
)

const (
	// The largest offset code.
	offsetCodeCount = 30

	// The special code used to mark the end of a block.
	endBlockMarker = 256

	// The first length code.
	lengthCodesStart = 257

	// The number of codegen codes.
	codegenCodeCount = 19
	badCode          = 255

	// bufferFlushSize indicates the buffer size
	// after which bytes are flushed to the writer.
	// Should preferably be a multiple of 6, since
	// we accumulate 6 bytes between writes to the buffer.
	bufferFlushSize = 240

	// bufferSize is the actual output byte buffer size.
	// It must have additional headroom for a flush
	// which can contain up to 8 bytes.
	bufferSize = bufferFlushSize + 8
)

// The number of extra bits needed by length code X - LENGTH_CODES_START.
var lengthExtraBits = []int8{
	/* 257 */ 0, 0, 0,
	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
	/* 280 */ 4, 5, 5, 5, 5, 0,
}

// The length indicated by length code X - LENGTH_CODES_START.
var lengthBase = []uint32{
	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
	64, 80, 96, 112, 128, 160, 192, 224, 255,
}

// offset code word extra bits.
var offsetExtraBits = []int8{
	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
}

var offsetBase = []uint32{
	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
}

// The odd order in which the codegen code sizes are written.
var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}

type huffmanBitWriter struct {
	// writer is the underlying writer.
	// Do not use it directly; use the write method, which ensures
	// that Write errors are sticky.
	writer io.Writer

	// Data waiting to be written is bytes[0:nbytes]
	// and then the low nbits of bits.
	bits            uint64
	nbits           uint
	bytes           [bufferSize]byte
	codegenFreq     [codegenCodeCount]int32
	nbytes          int
	literalFreq     []int32
	offsetFreq      []int32
	codegen         []uint8
	literalEncoding *huffmanEncoder
	offsetEncoding  *huffmanEncoder
	codegenEncoding *huffmanEncoder
	err             error
}

func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
	return &huffmanBitWriter{
		writer:          w,
		literalFreq:     make([]int32, maxNumLit),
		offsetFreq:      make([]int32, offsetCodeCount),
		codegen:         make([]uint8, maxNumLit+offsetCodeCount+1),
		literalEncoding: newHuffmanEncoder(maxNumLit),
		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
	}
}

func (w *huffmanBitWriter) reset(writer io.Writer) {
	w.writer = writer
	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
	w.bytes = [bufferSize]byte{}
}

func (w *huffmanBitWriter) flush() {
	if w.err != nil {
		w.nbits = 0
		return
	}
	n := w.nbytes
	for w.nbits != 0 {
		w.bytes[n] = byte(w.bits)
		w.bits >>= 8
		if w.nbits > 8 { // Avoid underflow
			w.nbits -= 8
		} else {
			w.nbits = 0
		}
		n++
	}
	w.bits = 0
	w.write(w.bytes[:n])
	w.nbytes = 0
}

func (w *huffmanBitWriter) write(b []byte) {
	if w.err != nil {
		return
	}
	_, w.err = w.writer.Write(b)
}

func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
	if w.err != nil {
		return
	}
	w.bits |= uint64(b) << w.nbits
	w.nbits += nb
	if w.nbits >= 48 {
		bits := w.bits
		w.bits >>= 48
		w.nbits -= 48
		n := w.nbytes
		bytes := w.bytes[n : n+6]
		bytes[0] = byte(bits)
		bytes[1] = byte(bits >> 8)
		bytes[2] = byte(bits >> 16)
		bytes[3] = byte(bits >> 24)
		bytes[4] = byte(bits >> 32)
		bytes[5] = byte(bits >> 40)
		n += 6
		if n >= bufferFlushSize {
			w.write(w.bytes[:n])
			n = 0
		}
		w.nbytes = n
	}
}

func (w *huffmanBitWriter) writeBytes(bytes []byte) {
	if w.err != nil {
		return
	}
	n := w.nbytes
	if w.nbits&7 != 0 {
		w.err = InternalError("writeBytes with unfinished bits")
		return
	}
	for w.nbits != 0 {
		w.bytes[n] = byte(w.bits)
		w.bits >>= 8
		w.nbits -= 8
		n++
	}
	if n != 0 {
		w.write(w.bytes[:n])
	}
	w.nbytes = 0
	w.write(bytes)
}

// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and offset lengths arrays (which are concatenated into a single
// array).  This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegenFreq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information. Code badCode is an end marker
//
//  numLiterals      The number of literals in literalEncoding
//  numOffsets       The number of offsets in offsetEncoding
//  litenc, offenc   The literal and offset encoder to use
func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
	for i := range w.codegenFreq {
		w.codegenFreq[i] = 0
	}
	// Note that we are using codegen both as a temporary variable for holding
	// a copy of the frequencies, and as the place where we put the result.
	// This is fine because the output is always shorter than the input used
	// so far.
	codegen := w.codegen // cache
	// Copy the concatenated code sizes to codegen. Put a marker at the end.
	cgnl := codegen[:numLiterals]
	for i := range cgnl {
		cgnl[i] = uint8(litEnc.codes[i].len)
	}

	cgnl = codegen[numLiterals : numLiterals+numOffsets]
	for i := range cgnl {
		cgnl[i] = uint8(offEnc.codes[i].len)
	}
	codegen[numLiterals+numOffsets] = badCode

	size := codegen[0]
	count := 1
	outIndex := 0
	for inIndex := 1; size != badCode; inIndex++ {
		// INVARIANT: We have seen "count" copies of size that have not yet
		// had output generated for them.
		nextSize := codegen[inIndex]
		if nextSize == size {
			count++
			continue
		}
		// We need to generate codegen indicating "count" of size.
		if size != 0 {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
			count--
			for count >= 3 {
				n := 6
				if n > count {
					n = count
				}
				codegen[outIndex] = 16
				outIndex++
				codegen[outIndex] = uint8(n - 3)
				outIndex++
				w.codegenFreq[16]++
				count -= n
			}
		} else {
			for count >= 11 {
				n := 138
				if n > count {
					n = count
				}
				codegen[outIndex] = 18
				outIndex++
				codegen[outIndex] = uint8(n - 11)
				outIndex++
				w.codegenFreq[18]++
				count -= n
			}
			if count >= 3 {
				// count >= 3 && count <= 10
				codegen[outIndex] = 17
				outIndex++
				codegen[outIndex] = uint8(count - 3)
				outIndex++
				w.codegenFreq[17]++
				count = 0
			}
		}
		count--
		for ; count >= 0; count-- {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
		}
		// Set up invariant for next time through the loop.
		size = nextSize
		count = 1
	}
	// Marker indicating the end of the codegen.
	codegen[outIndex] = badCode
}

// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
	numCodegens = len(w.codegenFreq)
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
		numCodegens--
	}
	header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
		int(w.codegenFreq[16])*2 +
		int(w.codegenFreq[17])*3 +
		int(w.codegenFreq[18])*7
	size = header +
		litEnc.bitLength(w.literalFreq) +
		offEnc.bitLength(w.offsetFreq) +
		extraBits

	return size, numCodegens
}

// fixedSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) fixedSize(extraBits int) int {
	return 3 +
		fixedLiteralEncoding.bitLength(w.literalFreq) +
		fixedOffsetEncoding.bitLength(w.offsetFreq) +
		extraBits
}

// storedSize calculates the stored size, including header.
// The function returns the size in bits and whether the block
// fits inside a single block.
func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
	if in == nil {
		return 0, false
	}
	if len(in) <= maxStoreBlockSize {
		return (len(in) + 5) * 8, true
	}
	return 0, false
}

func (w *huffmanBitWriter) writeCode(c hcode) {
	if w.err != nil {
		return
	}
	w.bits |= uint64(c.code) << w.nbits
	w.nbits += uint(c.len)
	if w.nbits >= 48 {
		bits := w.bits
		w.bits >>= 48
		w.nbits -= 48
		n := w.nbytes
		bytes := w.bytes[n : n+6]
		bytes[0] = byte(bits)
		bytes[1] = byte(bits >> 8)
		bytes[2] = byte(bits >> 16)
		bytes[3] = byte(bits >> 24)
		bytes[4] = byte(bits >> 32)
		bytes[5] = byte(bits >> 40)
		n += 6
		if n >= bufferFlushSize {
			w.write(w.bytes[:n])
			n = 0
		}
		w.nbytes = n
	}
}

// Write the header of a dynamic Huffman block to the output stream.
//
//  numLiterals  The number of literals specified in codegen
//  numOffsets   The number of offsets specified in codegen
//  numCodegens  The number of codegens used in codegen
func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
	if w.err != nil {
		return
	}
	var firstBits int32 = 4
	if isEof {
		firstBits = 5
	}
	w.writeBits(firstBits, 3)
	w.writeBits(int32(numLiterals-257), 5)
	w.writeBits(int32(numOffsets-1), 5)
	w.writeBits(int32(numCodegens-4), 4)

	for i := 0; i < numCodegens; i++ {
		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
		w.writeBits(int32(value), 3)
	}

	i := 0
	for {
		var codeWord int = int(w.codegen[i])
		i++
		if codeWord == badCode {
			break
		}
		w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])

		switch codeWord {
		case 16:
			w.writeBits(int32(w.codegen[i]), 2)
			i++
			break
		case 17:
			w.writeBits(int32(w.codegen[i]), 3)
			i++
			break
		case 18:
			w.writeBits(int32(w.codegen[i]), 7)
			i++
			break
		}
	}
}

func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
	if w.err != nil {
		return
	}
	var flag int32
	if isEof {
		flag = 1
	}
	w.writeBits(flag, 3)
	w.flush()
	w.writeBits(int32(length), 16)
	w.writeBits(int32(^uint16(length)), 16)
}

func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
	if w.err != nil {
		return
	}
	// Indicate that we are a fixed Huffman block
	var value int32 = 2
	if isEof {
		value = 3
	}
	w.writeBits(value, 3)
}

// writeBlock will write a block of tokens with the smallest encoding.
// The original input can be supplied, and if the huffman encoded data
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is nil, the tokens will always be Huffman encoded.
func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
	if w.err != nil {
		return
	}

	tokens = append(tokens, endBlockMarker)
	numLiterals, numOffsets := w.indexTokens(tokens)

	var extraBits int
	storedSize, storable := w.storedSize(input)
	if storable {
		// We only bother calculating the costs of the extra bits required by
		// the length of offset fields (which will be the same for both fixed
		// and dynamic encoding), if we need to compare those two encodings
		// against stored encoding.
		for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
			// First eight length codes have extra size = 0.
			extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
		}
		for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
			// First four offset codes have extra size = 0.
			extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
		}
	}

	// Figure out smallest code.
	// Fixed Huffman baseline.
	var literalEncoding = fixedLiteralEncoding
	var offsetEncoding = fixedOffsetEncoding
	var size = w.fixedSize(extraBits)

	// Dynamic Huffman?
	var numCodegens int

	// Generate codegen and codegenFrequencies, which indicates how to encode
	// the literalEncoding and the offsetEncoding.
	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
	w.codegenEncoding.generate(w.codegenFreq[:], 7)
	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)

	if dynamicSize < size {
		size = dynamicSize
		literalEncoding = w.literalEncoding
		offsetEncoding = w.offsetEncoding
	}

	// Stored bytes?
	if storable && storedSize < size {
		w.writeStoredHeader(len(input), eof)
		w.writeBytes(input)
		return
	}

	// Huffman.
	if literalEncoding == fixedLiteralEncoding {
		w.writeFixedHeader(eof)
	} else {
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
	}

	// Write the tokens.
	w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
}

// writeBlockDynamic encodes a block using a dynamic Huffman table.
// This should be used if the symbols used have a disproportionate
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
	if w.err != nil {
		return
	}

	tokens = append(tokens, endBlockMarker)
	numLiterals, numOffsets := w.indexTokens(tokens)

	// Generate codegen and codegenFrequencies, which indicates how to encode
	// the literalEncoding and the offsetEncoding.
	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
	w.codegenEncoding.generate(w.codegenFreq[:], 7)
	size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)

	// Store bytes, if we don't get a reasonable improvement.
	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
		w.writeStoredHeader(len(input), eof)
		w.writeBytes(input)
		return
	}

	// Write Huffman table.
	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)

	// Write the tokens.
	w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
}

// indexTokens indexes a slice of tokens, and updates
// literalFreq and offsetFreq, and generates literalEncoding
// and offsetEncoding.
// The number of literal and offset tokens is returned.
func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
	for i := range w.literalFreq {
		w.literalFreq[i] = 0
	}
	for i := range w.offsetFreq {
		w.offsetFreq[i] = 0
	}

	for _, t := range tokens {
		if t < matchType {
			w.literalFreq[t.literal()]++
			continue
		}
		length := t.length()
		offset := t.offset()
		w.literalFreq[lengthCodesStart+lengthCode(length)]++
		w.offsetFreq[offsetCode(offset)]++
	}

	// get the number of literals
	numLiterals = len(w.literalFreq)
	for w.literalFreq[numLiterals-1] == 0 {
		numLiterals--
	}
	// get the number of offsets
	numOffsets = len(w.offsetFreq)
	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
		numOffsets--
	}
	if numOffsets == 0 {
		// We haven't found a single match. If we want to go with the dynamic encoding,
		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
		w.offsetFreq[0] = 1
		numOffsets = 1
	}
	w.literalEncoding.generate(w.literalFreq, 15)
	w.offsetEncoding.generate(w.offsetFreq, 15)
	return
}

// writeTokens writes a slice of tokens to the output.
// codes for literal and offset encoding must be supplied.
func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
	if w.err != nil {
		return
	}
	for _, t := range tokens {
		if t < matchType {
			w.writeCode(leCodes[t.literal()])
			continue
		}
		// Write the length
		length := t.length()
		lengthCode := lengthCode(length)
		w.writeCode(leCodes[lengthCode+lengthCodesStart])
		extraLengthBits := uint(lengthExtraBits[lengthCode])
		if extraLengthBits > 0 {
			extraLength := int32(length - lengthBase[lengthCode])
			w.writeBits(extraLength, extraLengthBits)
		}
		// Write the offset
		offset := t.offset()
		offsetCode := offsetCode(offset)
		w.writeCode(oeCodes[offsetCode])
		extraOffsetBits := uint(offsetExtraBits[offsetCode])
		if extraOffsetBits > 0 {
			extraOffset := int32(offset - offsetBase[offsetCode])
			w.writeBits(extraOffset, extraOffsetBits)
		}
	}
}

// huffOffset is a static offset encoder used for huffman only encoding.
// It can be reused since we will not be encoding offset values.
var huffOffset *huffmanEncoder

func init() {
	offsetFreq := make([]int32, offsetCodeCount)
	offsetFreq[0] = 1
	huffOffset = newHuffmanEncoder(offsetCodeCount)
	huffOffset.generate(offsetFreq, 15)
}

// writeBlockHuff encodes a block of bytes as either
// Huffman encoded literals or uncompressed bytes if the
// results only gains very little from compression.
func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
	if w.err != nil {
		return
	}

	// Clear histogram
	for i := range w.literalFreq {
		w.literalFreq[i] = 0
	}

	// Add everything as literals
	histogram(input, w.literalFreq)

	w.literalFreq[endBlockMarker] = 1

	const numLiterals = endBlockMarker + 1
	const numOffsets = 1

	w.literalEncoding.generate(w.literalFreq, 15)

	// Figure out smallest code.
	// Always use dynamic Huffman or Store
	var numCodegens int

	// Generate codegen and codegenFrequencies, which indicates how to encode
	// the literalEncoding and the offsetEncoding.
	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
	w.codegenEncoding.generate(w.codegenFreq[:], 7)
	size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)

	// Store bytes, if we don't get a reasonable improvement.
	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
		w.writeStoredHeader(len(input), eof)
		w.writeBytes(input)
		return
	}

	// Huffman.
	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
	encoding := w.literalEncoding.codes[:257]
	n := w.nbytes
	for _, t := range input {
		// Bitwriting inlined, ~30% speedup
		c := encoding[t]
		w.bits |= uint64(c.code) << w.nbits
		w.nbits += uint(c.len)
		if w.nbits < 48 {
			continue
		}
		// Store 6 bytes
		bits := w.bits
		w.bits >>= 48
		w.nbits -= 48
		bytes := w.bytes[n : n+6]
		bytes[0] = byte(bits)
		bytes[1] = byte(bits >> 8)
		bytes[2] = byte(bits >> 16)
		bytes[3] = byte(bits >> 24)
		bytes[4] = byte(bits >> 32)
		bytes[5] = byte(bits >> 40)
		n += 6
		if n < bufferFlushSize {
			continue
		}
		w.write(w.bytes[:n])
		if w.err != nil {
			return // Return early in the event of write failures
		}
		n = 0
	}
	w.nbytes = n
	w.writeCode(encoding[endBlockMarker])
}

// histogram accumulates a histogram of b in h.
//
// len(h) must be >= 256, and h's elements must be all zeroes.
func histogram(b []byte, h []int32) {
	h = h[:256]
	for _, t := range b {
		h[t]++
	}
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.